login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017883
Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
10
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 7, 8, 10, 13, 17, 22, 28, 36, 42, 47, 52, 58, 66, 77, 92, 112, 141, 176, 215, 257, 302, 351, 406, 470, 546, 645, 774, 937, 1136, 1372, 1646
OFFSET
0,20
COMMENTS
Number of compositions (ordered partitions) of n into parts 9, 10, 11, 12, 13, 14, 15 and 16. - Ilya Gutkovskiy, May 27 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1).
FORMULA
a(n) = a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) for n>15. - Vincenzo Librandi, Jul 01 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[9, 16]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 01 2013 *)
PROG
(Magma)
m:=70; R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16))); // Vincenzo Librandi, Jul 01 2013
(SageMath)
def A017883_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(17)) ).list()
A017883_list(65) # G. C. Greubel, Sep 25 2024
KEYWORD
nonn,easy
STATUS
approved