login
A017893
Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
4
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 6, 7, 9, 12, 16, 21, 28, 36, 42, 46, 49, 52, 56, 62, 71, 84, 105, 135, 171, 210, 250, 290, 330, 371, 414, 462, 525, 614, 736, 894, 1088
OFFSET
0,22
COMMENTS
Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14, 15, 16 and 17. - Ilya Gutkovskiy, May 27 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1).
FORMULA
a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17), n>16. - Vincenzo Librandi, Jul 01 2013
MAPLE
a:= n-> (Matrix(17, (i, j)-> if (i=j-1) or (j=1 and i in [$10..17]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..70); # Alois P. Heinz, Jul 01 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[10, 17]]), {x, 0, 70}], x] (* Vincenzo Librandi, Jul 01 2013 *)
PROG
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17))); /* or */ I:=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]; [n le 17 select I[n] else Self(n-10)+Self(n-11)+Self(n-12)+Self(n-13)+Self(n-14)+Self(n-15)+Self(n-16)+Self(n-17): n in [1..70]]; // Vincenzo Librandi, Jul 01 2013
CROSSREFS
Sequence in context: A171890 A287793 A073795 * A017883 A269364 A309384
KEYWORD
nonn,easy
AUTHOR
STATUS
approved