login
A017891
Expansion of 1/(1-x^10-x^11-x^12-x^13-x^14-x^15).
4
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 2, 3, 6, 10, 15, 21, 25, 27, 27, 25, 22, 19, 20, 26, 38, 57, 80, 104, 125, 140, 147, 145, 140, 139, 150, 182, 240, 325, 430, 544, 653, 741, 801, 836, 861, 903, 996, 1176, 1466, 1871, 2374, 2933, 3494, 4005, 4436
OFFSET
0,22
COMMENTS
Number of compositions (ordered partitions) of n into parts 10, 11, 12, 13, 14 and 15. - Ilya Gutkovskiy, May 27 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1,1,1,1,1,1).
FORMULA
a(n) = a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) for n>14. - Vincenzo Librandi, Jul 01 2013
MATHEMATICA
CoefficientList[Series[1/(1 - Total[x^Range[10, 15]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 80);
Coefficients(R!(1/(1-x^10-x^11-x^12-x^13-x^14-x^15))); // Vincenzo Librandi, Jul 01 2013
(SageMath)
def A017891_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^10+x^16) ).list()
A017891_list(80) # G. C. Greubel, Nov 06 2024
CROSSREFS
Cf. A017887.
Sequence in context: A271859 A232240 A073793 * A017881 A017871 A366259
KEYWORD
nonn,easy,changed
STATUS
approved