login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017888
Expansion of 1/(1 - x^10 - x^11 - x^12).
3
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 0, 0, 1, 3, 6, 7, 6, 3, 1, 0, 0, 0, 1, 4, 10, 16, 19, 16, 10, 4, 1, 0, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 2, 6, 21, 50, 90, 126, 141, 126, 90, 50
OFFSET
0,22
COMMENTS
Number of compositions (ordered partitions) of n into parts 10, 11 and 12. - Ilya Gutkovskiy, May 27 2017
LINKS
FORMULA
a(n) = a(n-10) + a(n-11) + a(n-12), for n > 11. - Vincenzo Librandi, Jul 01 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[10, 12]]), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 01 2013 *)
PROG
(Magma)
m:=80; R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^10-x^11-x^12))); // Vincenzo Librandi, Jul 01 2013
(PARI)
my(x='x+O('x^80)); Vec(1/(1-x^10-x^11-x^12)) \\ Altug Alkan, Oct 04 2018
(SageMath)
def A017888_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^10+x^(13)) ).list()
A017888_list(80) # G. C. Greubel, Sep 25 2024
KEYWORD
nonn,easy
STATUS
approved