login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).
10

%I #24 Sep 25 2024 09:27:29

%S 1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,1,2,3,4,5,6,7,8,7,7,8,10,13,17,

%T 22,28,36,42,47,52,58,66,77,92,112,141,176,215,257,302,351,406,470,

%U 546,645,774,937,1136,1372,1646

%N Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16).

%C Number of compositions (ordered partitions) of n into parts 9, 10, 11, 12, 13, 14, 15 and 16. - _Ilya Gutkovskiy_, May 27 2017

%H Vincenzo Librandi, <a href="/A017883/b017883.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1).

%F a(n) = a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) for n>15. - _Vincenzo Librandi_, Jul 01 2013

%t CoefficientList[Series[1 / (1 - Total[x^Range[9, 16]]), {x, 0, 70}], x] (* _Vincenzo Librandi_, Jul 01 2013 *)

%o (Magma)

%o m:=70; R<x>:=PowerSeriesRing(Integers(), m);

%o Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16))); // _Vincenzo Librandi_, Jul 01 2013

%o (SageMath)

%o def A017883_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1-x)/(1-x-x^9+x^(17)) ).list()

%o A017883_list(65) # _G. C. Greubel_, Sep 25 2024

%Y Cf. A017877, A017878, A017879, A017880, A017881, A017882, A017884, A017885, A017886.

%K nonn,easy

%O 0,20

%A _N. J. A. Sloane_