login
A308029
Numbers whose sum of coreful divisors is equal to the sum of non-coreful divisors.
4
6, 1638, 55860, 168836850, 12854283750
OFFSET
1,1
COMMENTS
A coreful divisor d of a number k is a divisor with the same set of distinct prime factors as k (see LINKS).
Sequence is a subset of A083207.
Tested up to 10^12. - Giovanni Resta, May 10 2019
LINKS
G. E. Hardy and M. V. Subbarao, Highly powerful numbers, Congress. Numer. 37 (1983), 277-307. (Annotated scanned copy)
FORMULA
Solutions of A000203(k) = 2*A057723(k).
EXAMPLE
Divisors of 1638 are 1, 2, 3, 6, 7, 9, 13, 14, 18, 21, 26, 39, 42, 63, 78, 91, 117, 126, 182, 234, 273, 546, 819, 1638. The coreful ones are 546, 1638 and 1 + 2 + 3 + 6 + 7 + 9 + 13 + 14 + 18 + 21 + 26 + 39 + 42 + 63 + 78 + 91 + 117 + 126 + 182 + 234 + 273 + 819 = 546 + 1638 = 2184.
MAPLE
with(numtheory): P:=proc(q) local a, k, n; for n from 1 to q do
a:=mul(k, k=factorset(n)); if sigma(n)=2*a*sigma(n/a)
then print(n); fi; od; end: P(10^7);
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; csigmaQ[n_] := Times @@ (fc @@@ FactorInteger[n]) == Times @@ (f @@@ FactorInteger[n])/2; Select[Range[2, 10^5], csigmaQ] (* Amiram Eldar, May 11 2019 *)
PROG
(PARI) rad(n) = factorback(factorint(n)[, 1]); \\ A007947
s(n) = my(rn=rad(n)); rn*sigma(n/rn); \\ A057723
isok(n) = 2*s(n) == sigma(n); \\ Michel Marcus, May 11 2019
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, May 10 2019
EXTENSIONS
a(4)-a(5) from Giovanni Resta, May 10 2019
STATUS
approved