login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160226
Numerator of Hermite(n, 3/29).
1
1, 6, -1646, -30060, 8125356, 250995816, -66828269064, -2934019389456, 769231923622800, 44095556446256736, -11380059521124405984, -809967616552784735424, 205694055560527051103424, 17582550705864569406418560, -4392210914651297082988957824
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Sep 26 2018: (Start)
a(n) = 29^n * Hermite(n, 3/29).
E.g.f.: exp(6*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/29)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 6/29, -1646/841, -30060/24389, 8125356/707281
MATHEMATICA
HermiteH[Range[0, 20], 3/29]//Numerator (* Harvey P. Dale, Mar 31 2018 *)
Table[29^n*HermiteH[n, 3/29], {n, 0, 30}] (* G. C. Greubel, Sep 26 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 3/29)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(6*x - 841*x^2))) \\ G. C. Greubel, Sep 26 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(6/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 26 2018
CROSSREFS
Cf. A009973 (denominators).
Sequence in context: A281255 A216934 A308029 * A209609 A350595 A034841
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved