login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307704
Expansion of (1/(1 - x)) * Sum_{k>=1} (-x)^k/(1 - (-x)^k).
17
-1, 1, -1, 2, 0, 4, 2, 6, 3, 7, 5, 11, 9, 13, 9, 14, 12, 18, 16, 22, 18, 22, 20, 28, 25, 29, 25, 31, 29, 37, 35, 41, 37, 41, 37, 46, 44, 48, 44, 52, 50, 58, 56, 62, 56, 60, 58, 68, 65, 71, 67, 73, 71, 79, 75, 83, 79, 83, 81, 93, 91, 95, 89, 96, 92, 100, 98, 104, 100, 108
OFFSET
1,4
LINKS
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
FORMULA
a(n) = Sum_{k=1..n} (-1)^k*A000005(k).
a(n) = n*log(n)/2 + (gamma - log(2) - 1/2)*n + O(n^(131/416 + eps)) (Tóth, 2017). - Amiram Eldar, Oct 14 2022
MATHEMATICA
nmax = 70; Rest[CoefficientList[Series[1/(1 - x) Sum[(-x)^k/(1 - (-x)^k), {k, 1, nmax}], {x, 0, nmax}], x]]
Table[Sum[(-1)^k DivisorSigma[0, k], {k, 1, n}], {n, 1, 70}]
Accumulate[Array[(-1)^#*DivisorSigma[0, #] &, 70]] (* Amiram Eldar, Oct 14 2022 *)
CROSSREFS
Cf. A001620 (gamma), A002162.
Sequence in context: A334082 A346612 A352528 * A139716 A168232 A253136
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 22 2019
STATUS
approved