login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253136
The number of overpartitions of n into parts congruent to 2, 4, or 5 modulo 6.
1
1, 0, 2, 0, 4, 2, 6, 4, 10, 8, 18, 14, 28, 24, 44, 42, 68, 66, 102, 104, 154, 160, 226, 238, 330, 354, 476, 516, 676, 742, 958, 1056, 1342, 1486, 1862, 2076, 2568, 2872, 3516, 3940, 4782, 5370, 6464, 7268, 8686, 9774, 11606, 13070, 15428, 17380, 20408, 22986
OFFSET
0,3
LINKS
J. Lovejoy, A theorem on seven-colored overpartitions and its applications, Int. J. Number Theory 1 (2005), 215-224.
FORMULA
a(n) ~ Pi^(5/6) * exp(Pi*sqrt(n/2)) / (2^(7/4) * 3^(1/6) * Gamma(1/6) * n^(11/12)). - Vaclav Kotesovec, Jan 14 2021
MAPLE
series(mul((1+x^(6*k+2))*(1+x^(6*k+4))*(1+x^(6*k+5))/((1-x^(6*k+2))*(1-x^(6*k+4))*(1-x^(6*k+5))), k=0..100), x=0, 100);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
`if`(irem(i, 6) in [2, 4, 5], add(2*b(n-i*j, i-1), j=1..n/i), 0)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 04 2019
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[ MemberQ[{2, 4, 5}, Mod[i, 6]], Sum[2b[n - i j, i-1], {j, 1, n/i}], 0]]];
a[n_] := b[n, n];
a /@ Range[0, 60] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
nmax = 60; CoefficientList[Series[Product[(1 + x^(6*k+2)) * (1 + x^(6*k+4)) * (1 + x^(6*k+5)) / ((1 - x^(6*k+2)) * (1 - x^(6*k+4)) * (1 - x^(6*k+5))), {k, 0, nmax/6}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)
CROSSREFS
Cf. A056970.
Sequence in context: A307704 A139716 A168232 * A216960 A285348 A361008
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Mar 23 2015
STATUS
approved