login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307705
Expansion of Product_{k>=1} 1/(1 - x^k)^(k-phi(k)), where phi() is the Euler totient function (A000010).
0
1, 0, 1, 1, 3, 2, 8, 5, 16, 15, 34, 30, 75, 66, 144, 150, 285, 292, 566, 585, 1062, 1170, 1988, 2205, 3729, 4159, 6755, 7785, 12214, 14147, 21957, 25560, 38709, 45839, 67884, 80747, 118332, 141244, 203614, 245330, 348396, 420971, 592439, 717659, 998248, 1215439, 1672544, 2040210, 2786687
OFFSET
0,5
COMMENTS
Euler transform of A051953.
FORMULA
G.f.: exp(Sum_{k>=1} (sigma_2(k) - sigma_2(k^2)/sigma_1(k^2)) * x^k/k).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} cototient(d^2) ) * x^k/k).
a(n) ~ exp(3*((Pi^2 - 6)*Zeta(3))^(1/3) * n^(2/3) / (2*Pi)^(2/3) + 1/4) * ((Pi^2 - 6)*Zeta(3))^(1/4) / (A^3 * 2^(1/12) * 3^(1/2) * Pi^(5/6) * n^(3/4)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 06 2019
MATHEMATICA
nmax = 48; CoefficientList[Series[Product[1/(1 - x^k)^(k - EulerPhi[k]), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 48; CoefficientList[Series[Exp[Sum[(DivisorSigma[2, k] - DivisorSigma[2, k^2]/DivisorSigma[1, k^2]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 - EulerPhi[d^2], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 22 2019
STATUS
approved