login
A304886
Irregular triangle where row n contains indices k where the product of A002110(k) = A025487(n).
6
0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 4, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2
OFFSET
1,5
COMMENTS
Row n consists of terms k such that A025487(n) = the product of primorials p_k#, the k in row n written least to greatest k.
For m = A025487(n) in A000079 (i.e., m is an integer power of 2), row n contains A000079(m) 1s.
For m = A025487(n) in A002110 (i.e., m is a primorial) row n contains a single term k that is the index of m in A002110.
FORMULA
For row n > 1, Product_{k=1..A051282(n)} A000040(T(n,k)) = A181815(n). [Product of primes indexed by nonzero terms of row n is equal to A181815(n)] - Antti Karttunen, Dec 28 2019
EXAMPLE
Triangle begins as in rightmost column, which lists the terms that occur on row n. Maximum value of each row is given by A061394(n).
n A025487(n) Row n
--------------------------------
1 1 0
2 2 1
3 4 1,1
4 6 2
5 8 1,1,1
6 12 1,2
7 16 1,1,1,1
8 24 1,1,2
9 30 3
10 32 1,1,1,1,1
11 36 2,2
12 48 1,1,1,2
13 60 1,3
14 64 1,1,1,1,1,1
15 72 1,2,2
16 96 1,1,1,1,2
17 120 1,1,3
18 128 1,1,1,1,1,1,1
19 144 1,1,2,2
20 180 2,3
...
MATHEMATICA
(* Simple (A025487(n) < 10^5): *)
{{0}}~Join~Map[With[{w = #}, Reverse@ Array[Function[k, Count[w, _?(# >= k &)] ], Max@ w]] &, Select[Array[{#, FactorInteger[#][[All, -1]]} &, 400], Times @@ Boole@ {#1 == Times @@ MapIndexed[Prime[First@ #2]^#1 &, #3], #2 == #3} == 1 & @@ {#1, #2, Sort[#2, Greater]} & @@ # &][[All, -1]] ]
(* Efficient (A025487(n) < 10^23): *)
f[n_] := Block[{ww, g, h},
g[x_] := Apply[Times,
MapIndexed[Prime[First@ #2]^#1 &, x]];
h[x_] := Reverse@
Array[Function[k, Count[x, _?(# >= k &)] ], Max@ x];
ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 +
Length@ NestWhileList[NextPrime@ # &, 1,
Times @@ {##} <= n &, All] ];
Map[h, SortBy[Flatten[#, 1], g]] &@
Map[Block[{w = #, k = 1},
Apply[
Join, {{ConstantArray[1, Length@ w]},
If[Length@ # == 0, #, #[[1]]] }] &@ Reap[
Do[
If[# < n,
Sow[w]; k = 1,
If[k >= Length@ w, Break[], k++]] &@
g@ Set[w,
If[k == 1,
MapAt[# + 1 &, w, k],
PadLeft[#, Length@ w, First@ #] &@
Drop[MapAt[# + Boole[i > 1] &, w, k],
k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; {{0}}~Join~f@ 400
CROSSREFS
Cf. A025487, A051282 (row lengths), A061394 (row maximum), A124832, A181815.
Cf. also A307056.
Sequence in context: A296081 A074064 A275215 * A352080 A295632 A139549
KEYWORD
nonn,tabf
AUTHOR
Michael De Vlieger, May 21 2018
STATUS
approved