login
A275215
Triangle read by rows, coefficients of the q-Narayana numbers.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 3, 4, 3, 3, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 3, 4, 6, 6, 8, 6, 6, 4, 3, 1, 1, 1, 1, 3, 4, 6, 6, 8, 6, 6, 4, 3, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1
OFFSET
1,12
EXAMPLE
Triangle starts:
1: [{1}]
2: [{1}, {1}]
3: [{1}, {1,1,1}, {1}]
4: [{1}, {1,1,2,1,1}, {1,1,2,1,1}, {1}]
5: [{1}, {1,1,2,2,2,1,1}, {1,1,3,3,4,3,3,1,1}, {1,1,2,2,2,1,1}, {1}]
6: [{1}, {1,1,2,2,3,2,2,1,1}, {1,1,3,4,6,6,8,6,6,4,3,1,1},{1,1,3,4,6,6,8,6,6,4,3,1,1}, {1,1,2,2,3,2,2,1,1}, {1}]
Summing the {}-brackets gives the Narayana numbers, summing the []-brackets gives the Catalan numbers.
MATHEMATICA
QNarayana[n_, k_] := QBinomial[n, k, q] QBinomial[n-1, k, q]/QBinomial[k+1, 1, q];
QNarayanaRow[n_] := Table[CoefficientList[QNarayana[n, k] // FunctionExpand, q], {k, 0, n-1}] // Flatten; Table[QNarayanaRow[n], {n, 1, 6}] // Flatten
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jul 22 2016
STATUS
approved