OFFSET
1,4
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
This is equivalent to the author's conjecture in A303656.
It has been verified that a(n) > 0 for all n = 2..10^9.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
MAPLE
a(5) = 1 with 5 - 3^1 - 5^0 = 0^2 + 1^2.
a(25) = 1 with 25 - 3^1 - 5^1 = 1^2 + 4^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
f[n_]:=f[n]=FactorInteger[n];
g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n], i], 1], 4]==3&&Mod[Part[Part[f[n], i], 2], 2]==1], {i, 1, Length[f[n]]}]==0;
QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
tab={}; Do[r=0; Do[If[QQ[n-3^k-5^m], r=r+1], {k, 0, Log[3, n]}, {m, 0, If[n==3^k, -1, Log[5, n-3^k]]}]; tab=Append[tab, r], {n, 1, 90}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 28 2018
STATUS
approved