login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303430
Number of binary words of length n with exactly twice as many occurrences of subword 101 as occurrences of subword 010.
4
1, 2, 4, 6, 10, 17, 28, 49, 84, 148, 263, 472, 858, 1568, 2893, 5372, 10034, 18824, 35428, 66898, 126683, 240483, 457334, 870956, 1660850, 3171112, 6061596, 11597587, 22206775, 42551339, 81591256, 156553245, 300565760, 577360360, 1109601934, 2133499936
OFFSET
0,2
LINKS
EXAMPLE
a(0) = 1: the empty word.
a(1) = 2: 0, 1.
a(2) = 4: 00, 01, 10, 11.
a(3) = 6: 000, 001, 011, 100, 110, 111.
a(4) = 10: 0000, 0001, 0011, 0110, 0111, 1000, 1001, 1100, 1110, 1111.
a(5) = 17: 00000, 00001, 00011, 00110, 00111, 01100, 01110, 01111, 10000, 10001, 10011, 10101, 11000, 11001, 11100, 11110, 11111.
MAPLE
b:= proc(n, t, h, c) option remember; `if`(abs(c)>2*n, 0,
`if`(n=0, 1, b(n-1, [1, 3, 1][t], 2, c-`if`(h=3, 2, 0))
+ b(n-1, 2, [1, 3, 1][h], c+`if`(t=3, 1, 0))))
end:
a:= n-> b(n, 1$2, 0):
seq(a(n), n=0..50);
CROSSREFS
Column k=2 of A303696.
Sequence in context: A014216 A192683 A079961 * A144023 A018164 A321403
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 23 2018
STATUS
approved