The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284449 Number of n X 1 0..1 arrays with the number of 1's king-move adjacent to some 0 one less than the number of 0's adjacent to some 1. 7
 0, 0, 0, 1, 2, 6, 12, 28, 56, 119, 236, 481, 950, 1902, 3752, 7450, 14684, 29032, 57192, 112850, 222308, 438359, 863808, 1703239, 3357766, 6622471, 13061980, 25772503, 50859826, 100399602, 198235896, 391523612, 773453896, 1528361734, 3020781528, 5971996960 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of binary words of length n with exactly one occurrence of subword 101 more than occurrences of subword 010. a(5) = 6: 01101, 10101, 10110, 10111, 11011, 11101. - Alois P. Heinz, Apr 23 2018 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..3327 (first 210 terms from R. H. Hardin) FORMULA Recursion: see Maple program. - Alois P. Heinz, Apr 23 2018 EXAMPLE Both solutions for n=4 ..0. .0 ..1. .0 ..0. .1 ..0. .0 MAPLE a:= proc(n) option remember; `if`(n<6, [0\$3, 1, 2, 6][n+1],       ((n+2)*(5*n^4-98*n^3+661*n^2-1680*n+1164) *a(n-1)        -4*(2*n^5-37*n^4+226*n^3-442*n^2-87*n+204) *a(n-2)        -2*(3*n^4-63*n^3+376*n^2-468*n+264) *a(n-3)        +2*(8*n^5-155*n^4+1060*n^3-3035*n^2+3738*n-1752) *a(n-4)        -4*(5*n^5-101*n^4+750*n^3-2450*n^2+3312*n-1248) *a(n-5)        +4*(2*n-9)*(n^4-16*n^3+85*n^2-150*n+48) *a(n-6)) /        ((n+3)*(n^4-20*n^3+139*n^2-372*n+300)))     end: seq(a(n), n=0..35);  # Alois P. Heinz, Apr 23 2018 CROSSREFS Column 1 of A284455 and of A307796. Sequence in context: A327727 A222970 A112510 * A011949 A089820 A122746 Adjacent sequences:  A284446 A284447 A284448 * A284450 A284451 A284452 KEYWORD nonn AUTHOR R. H. Hardin, Mar 27 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 12:16 EST 2021. Contains 349462 sequences. (Running on oeis4.)