login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307796
Number T(n,k) of binary words of length n such that k is the difference of numbers of occurrences of subword 101 and subword 010; triangle T(n,k), n>=0, -floor(n/3)<=k<=floor(n/3), read by rows.
5
1, 2, 4, 1, 6, 1, 2, 12, 2, 6, 20, 6, 1, 12, 38, 12, 1, 3, 28, 66, 28, 3, 10, 56, 124, 56, 10, 1, 24, 119, 224, 119, 24, 1, 4, 60, 236, 424, 236, 60, 4, 15, 134, 481, 788, 481, 134, 15, 1, 42, 304, 950, 1502, 950, 304, 42, 1, 5, 114, 656, 1902, 2838, 1902, 656, 114, 5
OFFSET
0,2
LINKS
FORMULA
T(n,k) = T(n,-k).
Sum_{k = -floor(n/3)..floor(n/3)} T(n,k) * k^2/2 = A057711(n-2) for n > 1.
EXAMPLE
T(8,2) = 10: 01101101, 10101101, 10110101, 10110110, 10110111, 10111011, 10111101, 11011011, 11011101, 11101101.
T(8,-2) = 10: 00010010, 00100010, 00100100, 01000010, 01000100, 01001000, 01001001, 01001010, 01010010, 10010010.
T(9,3) = 1: 101101101.
T(9,-3) = 1: 010010010.
Triangle T(n,k) begins:
: 1 ;
: 2 ;
: 4 ;
: 1, 6, 1 ;
: 2, 12, 2 ;
: 6, 20, 6 ;
: 1, 12, 38, 12, 1 ;
: 3, 28, 66, 28, 3 ;
: 10, 56, 124, 56, 10 ;
: 1, 24, 119, 224, 119, 24, 1 ;
: 4, 60, 236, 424, 236, 60, 4 ;
: 15, 134, 481, 788, 481, 134, 15 ;
: 1, 42, 304, 950, 1502, 950, 304, 42, 1 ;
MAPLE
b:= proc(n, t, h) option remember; `if`(n=0, 1, expand(
`if`(h=3, 1/x, 1)*b(n-1, [1, 3, 1][t], 2)+
`if`(t=3, x, 1)*b(n-1, 2, [1, 3, 1][h])))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=-iquo(n, 3)..iquo(n, 3)))(b(n, 1$2)):
seq(T(n), n=0..15);
MATHEMATICA
b[n_, t_, h_] := b[n, t, h] = If[n == 0, 1, Expand[If[h == 3, 1/x, 1]* b[n-1, {1, 3, 1}[[t]], 2] + If[t == 3, x, 1]*b[n-1, 2, {1, 3, 1}[[h]]]]];
T[n_] := Table[Coefficient[#, x, i], {i, -Quotient[n, 3], Quotient[n, 3]}]& @ b[n, 1, 1];
Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 08 2019, after Alois P. Heinz *)
CROSSREFS
Columns k=0-2 give: A164146, A284449, A286209.
Row sums give A000079.
T(3n-4,n-2) gives A000217 for n >= 3.
Sequence in context: A047908 A125847 A078886 * A095247 A376121 A007734
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Apr 29 2019
STATUS
approved