login
A307796
Number T(n,k) of binary words of length n such that k is the difference of numbers of occurrences of subword 101 and subword 010; triangle T(n,k), n>=0, -floor(n/3)<=k<=floor(n/3), read by rows.
5
1, 2, 4, 1, 6, 1, 2, 12, 2, 6, 20, 6, 1, 12, 38, 12, 1, 3, 28, 66, 28, 3, 10, 56, 124, 56, 10, 1, 24, 119, 224, 119, 24, 1, 4, 60, 236, 424, 236, 60, 4, 15, 134, 481, 788, 481, 134, 15, 1, 42, 304, 950, 1502, 950, 304, 42, 1, 5, 114, 656, 1902, 2838, 1902, 656, 114, 5
OFFSET
0,2
LINKS
FORMULA
T(n,k) = T(n,-k).
Sum_{k = -floor(n/3)..floor(n/3)} T(n,k) * k^2/2 = A057711(n-2) for n > 1.
EXAMPLE
T(8,2) = 10: 01101101, 10101101, 10110101, 10110110, 10110111, 10111011, 10111101, 11011011, 11011101, 11101101.
T(8,-2) = 10: 00010010, 00100010, 00100100, 01000010, 01000100, 01001000, 01001001, 01001010, 01010010, 10010010.
T(9,3) = 1: 101101101.
T(9,-3) = 1: 010010010.
Triangle T(n,k) begins:
: 1 ;
: 2 ;
: 4 ;
: 1, 6, 1 ;
: 2, 12, 2 ;
: 6, 20, 6 ;
: 1, 12, 38, 12, 1 ;
: 3, 28, 66, 28, 3 ;
: 10, 56, 124, 56, 10 ;
: 1, 24, 119, 224, 119, 24, 1 ;
: 4, 60, 236, 424, 236, 60, 4 ;
: 15, 134, 481, 788, 481, 134, 15 ;
: 1, 42, 304, 950, 1502, 950, 304, 42, 1 ;
MAPLE
b:= proc(n, t, h) option remember; `if`(n=0, 1, expand(
`if`(h=3, 1/x, 1)*b(n-1, [1, 3, 1][t], 2)+
`if`(t=3, x, 1)*b(n-1, 2, [1, 3, 1][h])))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=-iquo(n, 3)..iquo(n, 3)))(b(n, 1$2)):
seq(T(n), n=0..15);
MATHEMATICA
b[n_, t_, h_] := b[n, t, h] = If[n == 0, 1, Expand[If[h == 3, 1/x, 1]* b[n-1, {1, 3, 1}[[t]], 2] + If[t == 3, x, 1]*b[n-1, 2, {1, 3, 1}[[h]]]]];
T[n_] := Table[Coefficient[#, x, i], {i, -Quotient[n, 3], Quotient[n, 3]}]& @ b[n, 1, 1];
Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 08 2019, after Alois P. Heinz *)
CROSSREFS
Columns k=0-2 give: A164146, A284449, A286209.
Row sums give A000079.
T(3n-4,n-2) gives A000217 for n >= 3.
Sequence in context: A047908 A125847 A078886 * A095247 A376121 A007734
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Apr 29 2019
STATUS
approved