login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307798
The "residue" pseudoprimes: odd composite numbers n such that q(n)^((n-1)/2) == 1 (mod n), where base q(n) is the smallest prime quadratic residue modulo n.
2
121, 561, 1105, 1541, 1729, 1905, 2465, 4033, 5611, 8321, 8481, 10585, 15709, 15841, 16297, 18705, 18721, 19345, 25761, 28009, 29341, 30121, 31697, 33153, 34945, 42799, 44173, 46657, 49141, 52633, 55969, 62745, 63973, 65077, 69781, 75361, 76627, 79381, 82513, 85489, 88573, 90241, 102311
OFFSET
1,1
COMMENTS
As is well known, for an odd prime p, a prime q is a quadratic residue modulo p if and only if q^((p-1)/2) == 1 (mod p). Hence the above definition of these pseudoprimes.
Such pseudoprimes n which are both "residue" and "non-residue", obviously to different bases q(n) and b(n), are particularly interesting: 29341, 49141, 1251949, 1373653, 2284453, ... These five numbers are in A244626.
Note that the absolute Euler pseudoprimes are odd composite numbers n such that b^((n-1)/2) == 1 (mod n) for every base b that is a quadratic residue modulo n and coprime to n. There are no odd composite numbers n such that b^((n-1)/2) == -1 (mod n) for every base b that is a quadratic non-residue modulo n and coprime to n. The absolute Euler-Jacobi pseudoprimes do not exist.
EXAMPLE
3^((121-1)/2) == 1 (mod 121), 2^((561-1)/2) == 1 (mod 561), ...
MATHEMATICA
q[n_] := Module[{p = 2, pn = Prime[n]}, While[JacobiSymbol[p, pn] != 1, p = NextPrime[p]]; p]; aQ[n_] := CompositeQ[n] && PowerMod[q[n], (n - 1)/2, n] == 1; Select[Range[3, 110000, 2], aQ] (* Amiram Eldar, Apr 29 2019 *)
CROSSREFS
Cf. A002997, A033181, A306530, A307767 (the "non-residue" pseudoprimes).
Sequence in context: A017654 A183448 A296127 * A204034 A183885 A036306
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Apr 29 2019
EXTENSIONS
More terms from Amiram Eldar, Apr 29 2019
STATUS
approved