login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A036306
Composite numbers whose prime factors contain no digits other than 1 and 6.
2
121, 671, 1331, 3721, 7271, 7381, 14641, 40321, 40931, 73271, 79981, 81191, 122771, 161051, 177221, 183271, 226981, 406321, 436921, 443531, 450241, 680821, 727771, 805981, 879791, 893101, 982771, 1016321, 1227721, 1350481, 1771561
OFFSET
1,1
COMMENTS
All terms are a product of at least two terms of A020454. - David A. Corneth, Oct 09 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p in A020454} (p/(p - 1)) - Sum_{p in A020454} 1/p - 1 = 0.0112607346... . - Amiram Eldar, May 18 2022
MATHEMATICA
pf16Q[n_]:=Module[{pfs=Union[Flatten[IntegerDigits/@Transpose[ FactorInteger[ n]][[1]]]]}, pfs=={1}||pfs=={1, 6}]; Select[Range[ 2*10^6], CompositeQ[#]&&pf16Q[#]&] (* Harvey P. Dale, Jul 12 2014 *)
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Patrick De Geest, Dec 15 1998
STATUS
approved