OFFSET
1,1
COMMENTS
All terms are a product of at least two terms of A020451. - David A. Corneth, Oct 09 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p in A020451} (p/(p - 1)) - Sum_{p in A020451} 1/p - 1 = 0.3374936085... . - Amiram Eldar, May 18 2022
EXAMPLE
The composite 117 = 3^2 * 13 is in the sequence as the digits of the prime factors are either 1 or 3. - David A. Corneth, Oct 17 2020
MATHEMATICA
Select[Range[3000], CompositeQ[#]&&SubsetQ[{1, 3}, Union[Flatten[IntegerDigits/@FactorInteger[#][[;; , 1]]]]]&] (* Harvey P. Dale, Jan 08 2025 *)
PROG
(Python)
from sympy import factorint
def ok(n):
f = factorint(n)
return sum(f.values()) > 1 and all(set(str(p)) <= set("13") for p in f)
print(list(filter(ok, range(2800)))) # Michael S. Branicky, Sep 27 2021
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Patrick De Geest, Dec 15 1998
STATUS
approved