|
|
A036301
|
|
Numbers whose sum of even digits and sum of odd digits are equal.
|
|
33
|
|
|
0, 112, 121, 134, 143, 156, 165, 178, 187, 211, 314, 336, 341, 358, 363, 385, 413, 431, 516, 538, 561, 583, 615, 633, 651, 718, 781, 817, 835, 853, 871, 1012, 1021, 1034, 1043, 1056, 1065, 1078, 1087, 1102, 1120, 1201, 1210, 1223, 1232, 1245, 1254, 1267, 1276, 1289, 1298
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
John Cerkan, Table of n, a(n) for n = 1..10000
|
|
MATHEMATICA
|
Select[Range[0, 10000], Plus @@Select[IntegerDigits[ # ], OddQ]\[Equal]Plus @@Select[IntegerDigits[ # ], EvenQ]&] (* Zak Seidov, Feb 17 2005 *)
|
|
PROG
|
(Magma) [ n: n in [0..1300] | (#A eq 0 select 0 else &+A) eq (#B eq 0 select 0 else &+B) where A is [ d: d in D | IsOdd(d) ] where B is [ d: d in D | IsEven(d) ] where D is Intseq(n) ];
(PARI) select( is_A036301(n)=!vecsum(apply(t->(-1)^t*t, digits(n))), [0..1999]) \\ This defines the function is_A036301(); the surrounding select(...) just serves as a check and illustration. - M. F. Hasler, Dec 09 2018
(Python)
def eodiff(n):
digs = list(map(int, str(n)))
return abs(sum(d for d in digs if d%2==0)-sum(d for d in digs if d%2==1))
def aupto(lim): return [m for m in range(lim+1) if eodiff(m) == 0]
print(aupto(1298)) # Michael S. Branicky, Feb 21 2021
|
|
CROSSREFS
|
Sequence in context: A096680 A109383 A281926 * A117723 A359142 A329719
Adjacent sequences: A036298 A036299 A036300 * A036302 A036303 A036304
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Patrick De Geest, Dec 15 1998
|
|
EXTENSIONS
|
Zero added by Zak Seidov, Nov 22 2010
Name edited by Michel Marcus, Jan 14 2021
|
|
STATUS
|
approved
|
|
|
|