login
A095247
Least k such that the concatenation a(1), a(2), a(3), ..., a(n-1), a(n) is divisible by n if and only if n is not a prime.
0
1, 1, 2, 4, 1, 6, 1, 6, 5, 10, 1, 16, 1, 6, 5, 12, 1, 2, 1, 20, 12, 10, 1, 28, 25, 4, 25, 36, 1, 20, 1, 28, 25, 6, 5, 40, 1, 30, 5, 20, 1, 36, 1, 36, 5, 26, 1, 12, 8, 50, 53, 16, 1, 22, 45, 52, 5, 16, 1, 40, 1, 32, 69, 12, 65, 58, 1, 52, 22, 40, 1, 28, 1, 24, 50, 44, 59, 38, 1, 60, 65, 70, 1
OFFSET
1,3
COMMENTS
Contribution from Hagen von Eitzen, Oct 03 2009: (Start)
a(n) < n + 10^floor(log_2(n)).
If k >= 1 and n in {10^k, 2*10^k, 5*10^k} then a(n) = n.
If n is prime then a(n) in {1, 2}. (End)
EXAMPLE
3 does not divide 112 while 4 divides 1124.
CROSSREFS
Sequence in context: A125847 A078886 A307796 * A376121 A007734 A171233
KEYWORD
base,nonn,uned
AUTHOR
Amarnath Murthy, Jun 17 2004
EXTENSIONS
More terms from Hagen von Eitzen, Oct 03 2009
STATUS
approved