login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171233
Array, T(n,k) = 2*(n/k), if n mod k = 0; otherwise, T(n,k) = 1. Read by antidiagonals.
2
2, 4, 1, 6, 2, 1, 8, 1, 1, 1, 10, 4, 2, 1, 1, 12, 1, 1, 1, 1, 1, 14, 6, 1, 2, 1, 1, 1, 16, 1, 4, 1, 1, 1, 1, 1, 18, 8, 1, 1, 2, 1, 1, 1, 1, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 22, 10, 6, 4, 1, 2, 1, 1, 1, 1, 1, 24, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 26, 12, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 28, 1, 8, 1, 4, 1, 1, 1
OFFSET
1,1
COMMENTS
T(n,3): continued fraction expansion of e - 1.
FORMULA
T(n,k) = A171232(n,k) + A077049(n,k).
EXAMPLE
Array begins
2 1 1 1 ...
4 2 1 1 ...
6 1 2 1 ...
8 4 1 2 ...
...........
MAPLE
A171233 := proc(n, k) if n mod k <> 0 then 1; else 2*n/k ; end if; end proc: seq(seq(A171233(d-k+1, k), k=1..d), d=1..17) ; # R. J. Mathar, Dec 08 2009
CROSSREFS
Cf. T(n,1) = A005843(n-1), A171232, A077049.
Sequence in context: A095247 A376121 A007734 * A362004 A096907 A360555
KEYWORD
cofr,nonn,tabl
AUTHOR
Ross La Haye, Dec 05 2009
EXTENSIONS
Terms beyond the 6th antidiagonal from R. J. Mathar, Dec 08 2009
STATUS
approved