login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171232
Array read by antidiagonals, T(n,k) = 2*(n/k) - 1, if n mod k = 0; otherwise, T(n,k) = 1.
1
1, 3, 1, 5, 1, 1, 7, 1, 1, 1, 9, 3, 1, 1, 1, 11, 1, 1, 1, 1, 1, 13, 5, 1, 1, 1, 1, 1, 15, 1, 3, 1, 1, 1, 1, 1, 17, 7, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 21, 9, 5, 3, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25, 11, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
T(n,1): continued fraction expansion of coth(1).
T(n,2): continued fraction expansion of tan(1) = cot(pi/2 - 1).
FORMULA
T(n,k) = A171233(n,k) - A077049(n,k).
EXAMPLE
Array begins
1 1 1 1 1 ...
3 1 1 1 1 ...
5 1 1 1 1 ...
7 3 1 1 1 ...
9 1 1 1 1 ...
.............
MATHEMATICA
T[n_, k_] := If[Divisible[n, k], 2*(n/k) - 1, 1]; Table[T[n-k+1, k], {n, 1, 10}, {k, 1, n}] //Flatten (* Amiram Eldar, Jun 29 2020 *)
CROSSREFS
Cf. T(n, 1) = A005408(n-1), T(n, 2) = A093178(n-1), A171233, A077049.
Sequence in context: A307410 A305444 A002945 * A093423 A326454 A227507
KEYWORD
cofr,nonn,tabl
AUTHOR
Ross La Haye, Dec 05 2009
EXTENSIONS
More terms from Amiram Eldar, Jun 29 2020
STATUS
approved