login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307410 Numerators of the product in the singular series. 0
1, 1, 1, 1, 3, 1, 5, 1, 1, 3, 9, 1, 11, 5, 3, 1, 15, 1, 17, 3, 5, 9, 21, 1, 3, 11, 1, 5, 27, 3, 29, 1, 9, 15, 5, 1, 35, 17, 11, 3, 39, 5, 41, 9, 3, 21, 45, 1, 5, 3, 15, 11, 51, 1, 27, 5, 17, 27, 57, 3, 59, 29, 5, 1, 11, 9, 65, 15, 21, 5, 69, 1, 71, 35, 3, 17, 3, 11, 77, 3, 1, 39, 81, 5, 45 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Differs from A305444 at n=35,65,70,...

LINKS

Table of n, a(n) for n=1..85.

John Omielan, How do you compute the singular series?.

Terence Tao, Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges. See the next formula after equation 2.

FORMULA

a(n) = numerator of Product_{p|n;p>2}(p-2)/(p-1) where p is a prime number.

MAPLE

f:= proc(n) numer(mul((p-2)/(p-1), p=select(type, numtheory:-factorset(n), odd))) end proc:

map(f, [$1..100]); # Robert Israel, Apr 07 2019

MATHEMATICA

Table[Times@@(DeleteDuplicates[DeleteCases[DeleteCases[Exp[MangoldtLambda[Divisors[h]]], 1], 2]] - 2)/Times@@(DeleteDuplicates[DeleteCases[DeleteCases[Exp[MangoldtLambda[Divisors[h]]], 1], 2]] - 1), {h, 1, 85}]

Numerator[%]

PROG

(PARI) a(n) = my(f=factor(n)[, 1]~); numerator(prod(k=1, #f, if (f[k]>2, (f[k]-2)/(f[k]-1), 1))); \\ Michel Marcus, Apr 07 2019

CROSSREFS

Cf. A005597.

Sequence in context: A176801 A339903 A187367 * A305444 A002945 A171232

Adjacent sequences:  A307407 A307408 A307409 * A307411 A307412 A307413

KEYWORD

nonn,frac,look

AUTHOR

Mats Granvik, Apr 07 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 19:16 EDT 2021. Contains 347717 sequences. (Running on oeis4.)