login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307407 Irregular table read by rows: rows list terms that map to the nodes in the graph of the "3x+1" (or Collatz) problem. 1
16, 4, 5, 1, 10, 2, 3, 40, 12, 13, 64, 20, 21, 88, 28, 29, 9, 58, 112, 36, 37, 136, 44, 45, 160, 52, 53, 17, 106, 34, 35, 11, 70, 22, 23, 7, 46, 14, 15, 184, 60, 61, 208, 68, 69, 232, 76, 77, 25, 154, 50, 51, 256, 84, 85, 280, 92, 93 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The construction is similiar to that in A322469. The sequence is the flattened form of an irregular table S(i, j) (see the example below) which has rows i >= 1 consisting of subsequences of varying length.

Like Truemper (cf. link), we denote the mapping x -> 2*x by "m" ("multiply"), the mapping x -> (x - 1)/3 by "d" ("divide"), and the combined mapping "dm" x -> (x - 1)/3 * 2 by "s" ("squeeze").  The d mapping is defined only if it is possible, that is, if x - 1 is divisible by 3. We write m, d and s as infix operation words, for example "4 mms 10", and we use exponents for repeated operations, for example "mms^2 = mmss".

Row i in table S is constructed by the following algorithm: Start with 6 * i - 2 in column j = 1. The following columns j are defined in groups of four by the operations:

  k   j=4*k+2    j=4*k+3    j=4*k+4    j=4*k+5

  --------------------------------------------------

  0   mm         dmm        mmd        dmmd

  1   mms        dmms       mmsd       dmmsd

  2   mms^2      dmms^2     mms^2d     dmms^2d

  ...

  k   mms^k      dmms^k     mm(s^k)d   dmm(s^k)d

The construction for the row terminates at the first column where a d operation is no longer possible. This point is always reached. This can be proved by the observation that, for any row i in S, there is a unique mapping x -> (x + 2)/6 of the terms in column 1, 2, 5, 9, 13, ... 4*m+1 to the terms in row i of table T in A322469. The row construction process in A322469 stops, therefore it stops also in the sequence defined here.

Conjecture: The sequence is a permutation of the positive numbers.

LINKS

Table of n, a(n) for n=1..58.

Georg Fischer, Perl program for the generation of related sequences.

Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.

EXAMPLE

Table S(i, j) begins:

  i\j    1   2   3   4   5   6   7   8   9  10  11  12  13  14  15

  ----------------------------------------------------------------

  1:    16   4   5   1  10   2   3

  2:    40  12  13

  3:    64  20  21

  4:    88  28  29   9  58

  5:   112  36  37

  6:   136  44  45

  7:   160  52  53  17 106  34  35  11  70  22  23   7  46  14  15

  8:   184  60  61

PROG

(Perl) cf. link.

CROSSREFS

Cf. A160016 (level 3), A307048 (level 2), A322469 (level 1).

Sequence in context: A082959 A232014 A018814 * A234288 A177499 A040247

Adjacent sequences:  A307404 A307405 A307406 * A307408 A307409 A307410

KEYWORD

nonn,easy,tabf

AUTHOR

Georg Fischer, Apr 14 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 18:48 EDT 2019. Contains 327245 sequences. (Running on oeis4.)