login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307407
Irregular table read by rows: rows list terms that map to the nodes in the graph of the "3x+1" (or Collatz) problem.
3
16, 4, 5, 1, 10, 2, 3, 40, 12, 13, 64, 20, 21, 88, 28, 29, 9, 58, 112, 36, 37, 136, 44, 45, 160, 52, 53, 17, 106, 34, 35, 11, 70, 22, 23, 7, 46, 14, 15, 184, 60, 61, 208, 68, 69, 232, 76, 77, 25, 154, 50, 51, 256, 84, 85, 280, 92, 93
OFFSET
1,1
COMMENTS
The construction is similar to that in A322469. The sequence is the flattened form of an irregular table S(i, j) (see the example below) which has rows i >= 1 consisting of subsequences of varying length.
Like Truemper (cf. link), we denote the mapping x -> 2*x by "m" ("multiply"), the mapping x -> (x - 1)/3 by "d" ("divide"), and the combined mapping "dm" x -> (x - 1)/3 * 2 by "s" ("squeeze"). The d mapping is defined only if it is possible, that is, if x - 1 is divisible by 3. We write m, d and s as infix operation words, for example "4 mms 10", and we use exponents for repeated operations, for example "mms^2 = mmss".
Row i in table S is constructed by the following algorithm: Start with 6 * i - 2 in column j = 1. The following columns j are defined in groups of four by the operations:
k j=4*k+2 j=4*k+3 j=4*k+4 j=4*k+5
--------------------------------------------------
0 mm dmm mmd dmmd
1 mms dmms mmsd dmmsd
2 mms^2 dmms^2 mms^2d dmms^2d
...
k mms^k dmms^k mm(s^k)d dmm(s^k)d
The construction for the row terminates at the first column where a d operation is no longer possible. This point is always reached. This can be proved by the observation that, for any row i in S, there is a unique mapping x -> (x + 2)/6 of the terms in column 1, 2, 5, 9, 13, ... 4*m+1 to the terms in row i of table T in A322469. The row construction process in A322469 stops, therefore it stops also in the sequence defined here.
Conjecture: The sequence is a permutation of the positive numbers.
LINKS
Manfred Trümper, The Collatz Problem in the Light of an Infinite Free Semigroup, Chinese Journal of Mathematics, Vol. 2014, Article ID 756917, 21 pages.
EXAMPLE
Table S(i, j) begins:
i\j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
----------------------------------------------------------------
1: 16 4 5 1 10 2 3
2: 40 12 13
3: 64 20 21
4: 88 28 29 9 58
5: 112 36 37
6: 136 44 45
7: 160 52 53 17 106 34 35 11 70 22 23 7 46 14 15
8: 184 60 61
PROG
(Perl) cf. link.
CROSSREFS
Cf. A160016 (level 3), A307048 (level 2), A322469 (level 1).
Sequence in context: A082959 A232014 A018814 * A234288 A177499 A331227
KEYWORD
nonn,easy,tabf
AUTHOR
Georg Fischer, Apr 14 2019
STATUS
approved