login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array, T(n,k) = 2*(n/k), if n mod k = 0; otherwise, T(n,k) = 1. Read by antidiagonals.
2

%I #7 Dec 10 2016 22:35:40

%S 2,4,1,6,2,1,8,1,1,1,10,4,2,1,1,12,1,1,1,1,1,14,6,1,2,1,1,1,16,1,4,1,

%T 1,1,1,1,18,8,1,1,2,1,1,1,1,20,1,1,1,1,1,1,1,1,1,22,10,6,4,1,2,1,1,1,

%U 1,1,24,1,1,1,1,1,1,1,1,1,1,1,26,12,1,1,1,1,2,1,1,1,1,1,1,28,1,8,1,4,1,1,1

%N Array, T(n,k) = 2*(n/k), if n mod k = 0; otherwise, T(n,k) = 1. Read by antidiagonals.

%C T(n,3): continued fraction expansion of e - 1.

%F T(n,k) = A171232(n,k) + A077049(n,k).

%e Array begins

%e 2 1 1 1 ...

%e 4 2 1 1 ...

%e 6 1 2 1 ...

%e 8 4 1 2 ...

%e ...........

%p A171233 := proc(n,k) if n mod k <> 0 then 1; else 2*n/k ; end if; end proc: seq(seq(A171233(d-k+1,k),k=1..d),d=1..17) ; # _R. J. Mathar_, Dec 08 2009

%Y Cf. T(n,1) = A005843(n-1), A171232, A077049.

%K cofr,nonn,tabl

%O 1,1

%A _Ross La Haye_, Dec 05 2009

%E Terms beyond the 6th antidiagonal from _R. J. Mathar_, Dec 08 2009