login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030168
Continued fraction for Copeland-Erdős constant 0.235711... (concatenate primes).
14
0, 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, 2, 2, 1, 1, 2, 1, 4, 39, 4, 4, 5, 2, 1, 1, 87, 16, 1, 2, 1, 2, 1, 1, 3, 1, 8, 1, 3, 1, 1, 6, 1, 13, 27, 1, 1, 3, 1, 41, 1, 2, 1, 1, 19, 1, 1, 1, 1, 3, 1, 1, 484, 1, 4, 1, 19, 3, 6, 8, 1, 5, 1, 17, 9, 2, 3, 5, 25, 1468, 1, 1, 3, 1
OFFSET
0,2
EXAMPLE
0.23571113171923293137414347... = 0 + 1/(4 + 1/(4 + 1/(8 + 1/(16 + ...))))
MATHEMATICA
Take[ ContinuedFraction@ FromDigits[{Flatten[ IntegerDigits[ Prime@Range@ 47]], 0}], 95] (* Robert G. Wilson v, Oct 17 2013 *)
PROG
(PARI)
s=concat(vector(2000, i, Str(prime(i)))); c=contfrac(eval(s)/10^#s);
c2=contfrac((eval(s)+10^9)/10^#s);
for(i=1, #c, c[i]!=c2[i] & return(Str("Terms may be wrong for n>="i-1));
write("b030168.txt", i-1, " ", c[i])) \\ M. F. Hasler, Oct 13 2009
(PARI) { default(realprecision, 2100); x=0.0; m=0; forprime (p=2, 4000, n=1+floor(log(p)/log(10)); x=p+x*10^n; m+=n; ); x=contfrac(x/10^m); for (n=1, 2001, write("b030168.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 30 2009
CROSSREFS
Cf. A033308 (decimal expansion), A072754 (numerators of convergents), A072755 (denominators of convergents).
Sequence in context: A095294 A190100 A244421 * A261212 A112435 A232508
KEYWORD
nonn,cofr,base
STATUS
approved