login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030169
Decimal expansion of real number x such that y = Gamma(x) is a minimum.
21
1, 4, 6, 1, 6, 3, 2, 1, 4, 4, 9, 6, 8, 3, 6, 2, 3, 4, 1, 2, 6, 2, 6, 5, 9, 5, 4, 2, 3, 2, 5, 7, 2, 1, 3, 2, 8, 4, 6, 8, 1, 9, 6, 2, 0, 4, 0, 0, 6, 4, 4, 6, 3, 5, 1, 2, 9, 5, 9, 8, 8, 4, 0, 8, 5, 9, 8, 7, 8, 6, 4, 4, 0, 3, 5, 3, 8, 0, 1, 8, 1, 0, 2, 4, 3, 0, 7, 4, 9, 9, 2, 7, 3, 3, 7, 2, 5, 5, 9
OFFSET
1,2
COMMENTS
"The gamma function has a minimum at this point. 1.461632144968362341262659542325721328468196204006446351295988409 is the solution of the equation: Psi(x)*Gamma(x)=0. The point y of that function is 0.8856031944108887002788159005825887332079515336699034488712001659". - Simon Plouffe
Positive root of psi(x) = 0, where psi is the digamma function. - Charles R Greathouse IV, May 30 2012
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.
LINKS
Simon Plouffe, editor, Miscellaneous Mathematical Constants Project Gutenberg, 1996 [see "Minimal y of GAMMA(x)" paragraph].
Eric Weisstein's World of Mathematics, Gamma Function.
EXAMPLE
x = 1.461632144968362..., y = 0.885603194410888...
MAPLE
Digits:= 120; fsolve(Psi(x)=0, x); # Iaroslav V. Blagouchine, Feb 16 2016
MATHEMATICA
First@ RealDigits[ FindMinimum[ Gamma[x], {x, 1.4}, WorkingPrecision -> 2^7][[2, 1, 2]]] (* Robert G. Wilson v, Aug 03 2010 *)
RealDigits[x /. FindRoot[PolyGamma[x], {x, 1}, WorkingPrecision -> 200]][[1]] (* Charles R Greathouse IV, May 30 2012 *)
PROG
(PARI) solve(x=1, 2, psi(x)) \\ Charles R Greathouse IV, May 30 2012
CROSSREFS
Cf. A030171 for value of y.
Sequence in context: A051261 A247621 A245275 * A263180 A239809 A203999
KEYWORD
nonn,cons
EXTENSIONS
Additional comments from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 29 2001
Broken URL to Project Gutenberg replaced by Georg Fischer, Jan 03 2009
STATUS
approved