Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Dec 19 2015 23:54:06
%S 0,4,4,8,16,18,5,1,1,1,1,7,1,1,6,2,9,58,1,3,4,2,2,1,1,2,1,4,39,4,4,5,
%T 2,1,1,87,16,1,2,1,2,1,1,3,1,8,1,3,1,1,6,1,13,27,1,1,3,1,41,1,2,1,1,
%U 19,1,1,1,1,3,1,1,484,1,4,1,19,3,6,8,1,5,1,17,9,2,3,5,25,1468,1,1,3,1
%N Continued fraction for Copeland-Erdős constant 0.235711... (concatenate primes).
%H M. F. Hasler, <a href="/A030168/b030168.txt">Table of n, a(n) for n = 0..5000</a>
%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Copeland-ErdosConstant.html">Copeland-Erdős Constant</a>
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>
%e 0.23571113171923293137414347... = 0 + 1/(4 + 1/(4 + 1/(8 + 1/(16 + ...))))
%t Take[ ContinuedFraction@ FromDigits[{Flatten[ IntegerDigits[ Prime@Range@ 47]], 0}], 95] (* _Robert G. Wilson v_, Oct 17 2013 *)
%o (PARI)
%o s=concat(vector(2000,i,Str(prime(i)))); c=contfrac(eval(s)/10^#s);
%o c2=contfrac((eval(s)+10^9)/10^#s);
%o for(i=1,#c, c[i]!=c2[i] & return(Str("Terms may be wrong for n>="i-1));
%o write("b030168.txt",i-1," ",c[i])) \\ _M. F. Hasler_, Oct 13 2009
%o (PARI) { default(realprecision, 2100); x=0.0; m=0; forprime (p=2, 4000, n=1+floor(log(p)/log(10)); x=p+x*10^n; m+=n; ); x=contfrac(x/10^m); for (n=1, 2001, write("b030168.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Apr 30 2009
%Y Cf. A033308 (decimal expansion), A072754 (numerators of convergents), A072755 (denominators of convergents).
%K nonn,cofr,base
%O 0,2
%A _Eric W. Weisstein_