login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190100
T(n,k) = number of 1:2:sqrt(5) proportioned triangles on a (n+1) X (k+1) grid.
3
0, 4, 4, 8, 16, 8, 12, 32, 32, 12, 16, 52, 64, 52, 16, 20, 76, 104, 104, 76, 20, 24, 100, 152, 176, 152, 100, 24, 28, 124, 204, 260, 260, 204, 124, 28, 32, 148, 260, 356, 384, 356, 260, 148, 32, 36, 172, 316, 460, 532, 532, 460, 316, 172, 36, 40, 196, 372, 572, 692, 744, 692
OFFSET
1,2
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*n - 4
k=2: a(n) = 24*n - 44 for n>3
k=3: a(n) = 56*n - 132 for n>5
k=4: a(n) = 120*n - 392 for n>8
k=5: a(n) = 204*n - 796 for n>10
k=6: a(n) = 336*n - 1608 for n>13
k=7: a(n) = 496*n - 2716 for n>15
k=8: a(n) = 720*n - 4568 for n>18
k=9: a(n) = 980*n - 6920 for n>20
k=10: a(n) = 1320*n - 10452 for n>23
k=11: a(n) = 1704*n - 14740 for n>25
k=12: a(n) = 2184*n - 20748 for n>28
k=13: a(n) = 2716*n - 27820 for n>30
k=14: a(n) = 3360*n - 37252 for n>33
EXAMPLE
Table starts
..0...4...8..12...16...20...24...28...32...36...40...44...48...52...56....60
..4..16..32..52...76..100..124..148..172..196..220..244..268..292..316...340
..8..32..64.104..152..204..260..316..372..428..484..540..596..652..708...764
.12..52.104.176..260..356..460..572..688..808..928.1048.1168.1288.1408..1528
.16..76.152.260..384..532..692..868.1052.1248.1448.1652.1856.2060.2264..2468
.20.100.204.356..532..744..976.1236.1512.1808.2116.2436.2764.3096.3432..3768
.24.124.260.460..692..976.1288.1640.2016.2424.2852.3300.3764.4240.4728..5220
.28.148.316.572..868.1236.1640.2104.2600.3144.3716.4324.4956.5612.6288..6980
.32.172.372.688.1052.1512.2016.2600.3224.3916.4644.5424.6236.7088.7968..8876
.36.196.428.808.1248.1808.2424.3144.3916.4776.5684.6664.7688.8768.9888.11052
Some solutions for n=7 k=5
..3..5....0..1....6..3....2..0....5..4....3..3....2..0....3..4....4..1....7..3
..1..3....0..5....4..5....2..1....7..0....3..1....0..2....5..0....0..1....5..3
..7..1....2..1....7..4....4..0....7..5....7..3....3..1....5..5....4..3....7..2
PROG
(PARI) T(n, k)=2*sum(i=0, n\2, sum(j=0, k\2, ((i!=0) + (j!=0))* (max(0, n+1 - max(2*i, j)) * max(0, k+1 - (2*j+i)) + max(0, n+1 - (2*i+j)) * max(0, k+1 - max(2*j, i)) ))) \\ Andrew Howroyd, Mar 11 2024
CROSSREFS
Diagonal is A190099.
Cf. A189885.
Sequence in context: A022087 A333149 A095294 * A244421 A030168 A261212
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 04 2011
STATUS
approved