login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190103
T(n,k) = number of 1:3:sqrt(10) proportioned triangles on a (n+1) X (k+1) grid.
3
0, 0, 0, 4, 0, 4, 8, 8, 8, 8, 12, 16, 24, 16, 12, 16, 24, 44, 44, 24, 16, 20, 36, 64, 80, 64, 36, 20, 24, 48, 92, 116, 116, 92, 48, 24, 28, 60, 124, 164, 168, 164, 124, 60, 28, 32, 72, 156, 220, 240, 240, 220, 156, 72, 32, 36, 84, 192, 276, 324, 344, 324, 276, 192, 84, 36, 40, 96
OFFSET
1,4
LINKS
FORMULA
Empirical for columns:
k=1: a(n) = 4*n - 8 for n>1
k=2: a(n) = 12*n - 36 for n>4
k=3: a(n) = 40*n - 168 for n>8
k=4: a(n) = 80*n - 400 for n>11
k=5: a(n) = 132*n - 768 for n>14
k=6: a(n) = 224*n - 1588 for n>18
k=7: a(n) = 336*n - 2712 for n>21
k=8: a(n) = 468*n - 4200 for n>24
k=9: a(n) = 660*n - 6732 for n>28
k=10: a(n) = 880*n - 9884 for n>31
k=11: a(n) = 1128*n - 13740 for n>34
k=12: a(n) = 1456*n - 19476 for n>38
k=13: a(n) = 1820*n - 26264 for n>41
k=14: a(n) = 2220*n - 34208 for n>44
EXAMPLE
Table starts
..0..0...4...8..12..16...20...24...28...32...36...40...44...48...52...56...60
..0..0...8..16..24..36...48...60...72...84...96..108..120..132..144..156..168
..4..8..24..44..64..92..124..156..192..232..272..312..352..392..432..472..512
..8.16..44..80.116.164..220..276..340..412..484..560..640..720..800..880..960
.12.24..64.116.168.240..324..408..504..612..720..836..960.1084.1212.1344.1476
.16.36..92.164.240.344..464..588..732..892.1056.1232.1420.1612.1812.2020.2232
.20.48.124.220.324.464..624..792..988.1204.1428.1672.1932.2200.2480.2772.3072
.24.60.156.276.408.588..792.1008.1260.1536.1824.2140.2476.2824.3192.3576.3972
.28.72.192.340.504.732..988.1260.1584.1936.2304.2712.3144.3592.4072.4572.5088
.32.84.232.412.612.892.1204.1536.1936.2368.2820.3328.3864.4420.5020.5644.6288
Some solutions for n=7 k=5
..0..3....3..3....0..0....2..1....3..5....1..1....2..4....7..0....4..2....0..1
..0..1....3..2....0..2....2..0....0..2....1..3....2..1....1..0....1..2....0..2
..6..3....6..3....6..0....5..1....4..4....7..1....3..4....7..2....4..1....3..1
PROG
(PARI) T(n, k)=2*sum(i=0, n\3, sum(j=0, k\3, ((i!=0) + (j!=0))* (max(0, n+1 - max(3*i, j)) * max(0, k+1 - (3*j+i)) + max(0, n+1 - (3*i+j)) * max(0, k+1 - max(3*j, i)) ))) \\ Andrew Howroyd, Mar 11 2024
CROSSREFS
Diagonal is A190102.
Cf. A189885.
Sequence in context: A298518 A021251 A160207 * A176714 A055951 A165032
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 04 2011
STATUS
approved