login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300473
Numbers k with the property that k^2 + 21k + 1 is prime.
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 73, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 89, 91, 97, 100
OFFSET
1,2
COMMENTS
The quadratic polynomial p(k) = k^2 + 21*k + 1 is not a prime-generating polynomial in the sense of Eric Weisstein's World of Mathematics (see link) because p(0) is not prime.
However p(k) is prime for the first 17 positive integral values of k and among polynomials of the form k^2 + j*k + 1, the present polynomial (j = 21) generates more primes than any polynomial of that form for any positive integral j < 231, at least for positive integers, k, in the range 0 < k < 10^6.
LINKS
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
EXAMPLE
17 is in the sequence because 17^2 + 21 * 17 + 1 = 647 is prime.
18 is not in the sequence because 18^2 + 21 * 18 + 1 = 703 = 19 * 37.
MAPLE
select(k-> isprime(k^2+21*k+1), [$1..100])
MATHEMATICA
Select[Range[100], PrimeQ[#^2 + 21# + 1] &] (* Alonso del Arte, Mar 06 2018 *)
PROG
(PARI) isok(k) = isprime(k^2+21*k+1); \\ Altug Alkan, Mar 07 2018
KEYWORD
nonn
AUTHOR
STATUS
approved