login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300474
Number of partitions of the square resulting from a sequence of n n-sections, each of which divides any part perpendicular to any of the axes.
3
1, 1, 8, 96, 2240, 80960, 4021248, 255704064, 19878918144, 1829788646400, 194788537180160, 23556611967336448, 3191162612827078656, 478807179615908462592, 78833945248222913495040, 14133035289273287214366720, 2740751307013005651817267200
OFFSET
0,3
LINKS
EXAMPLE
a(2) = 8:
._______. ._______. ._______. ._______.
| | | | | | | | |_______| | |
| | | | | | | | |_______| |_______|
| | | | | | | | | | |_______|
|_|_|___| |___|_|_| |_______| |_______|
._______. ._______. ._______. ._______.
| | | | | | | | | | |
|___| | | |___| |___|___| |_______|
| | | | | | | | | | |
|___|___| |___|___| |_______| |___|___|.
.
MAPLE
a:= proc(n) option remember; `if`(n<2, 1, coeff(series(
RootOf(G-x-2*G^n+G^(n^2), G), x, n^2-n+2), x, n^2-n+1))
end:
seq(a(n), n=0..16);
MATHEMATICA
a[0] = a[1] = 1; a[n_] := Module[{G}, G[_] = 0; Do[G[x_] = 2 G[x]^n - G[x]^n^2 + x + O[x]^(n^2 - n + 2) // Normal, {n^2 - n + 2}];
Coefficient[G[x], x, n^2 - n + 1]];
Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Dec 29 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 15 2018
STATUS
approved