OFFSET
1,1
COMMENTS
Numbers w which can be expressed as w^2 = x^4 +y^4 +z^4 +t^4 with x,y,z,t >0. Values that have more than one representation (w=63, 153, 207, 252,...) are listed only once.
LINKS
A. Alvarado, J.-J. Delorme, On the diophantine equation x^4+y^4+z^4+t^4=w^2, J. Int. Seq. 17 (2014) # 14.11.5.
EXAMPLE
2^2 = 1^4 +1^4 +1^4 +1^4. 7^2 = 1^4 +2^4 +2^4 +2^4. 8^2 = 2^4 +2^4 +2^4 +2^4. 17^2 = 1^2 +2^4 +2^4 +4^4. 18^2=3^4 +3^4 +3^4 +3^4. 23^2 = 1^2 +2^4 +4^4 +4^4.
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Mar 06 2018
STATUS
approved