|
|
A300479
|
|
Numbers k such that k is the uphi(k)-th composite number, where uphi is the unitary totient function.
|
|
0
|
|
|
6, 12, 15, 21, 24, 28, 36, 52, 68, 76, 265, 295, 2681, 8104, 21413, 174757, 1302197, 15536176, 20149241, 25873648, 237875719, 358334927
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The unitary version of A100410.
No more terms below 10^7.
|
|
LINKS
|
Table of n, a(n) for n=1..22.
|
|
FORMULA
|
Numbers k, such that k = A002808(A047994(k)).
|
|
EXAMPLE
|
12 is a term because uphi(12) = 6 and 12 = A002808(6), the 6th composite.
15 is a term because uphi(15) = 8 and 15 = A002808(8), the 8th composite.
|
|
MATHEMATICA
|
uphi[n_] :=(Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n] ))[[1]] ; seqQ[n_] := (n - uphi[n] - 1 == PrimePi[n]); Select[Range[2, 10^7], seqQ]
|
|
PROG
|
(PARI) uphi(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[1, 2]-1);
isok(k) = k - primepi(k) - 1 == uphi(k); \\ Michel Marcus, Mar 07 2018
|
|
CROSSREFS
|
Cf. A000720, A002808, A047994, A100410.
Sequence in context: A106420 A308611 A315619 * A315620 A315621 A315622
Adjacent sequences: A300476 A300477 A300478 * A300480 A300481 A300482
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Amiram Eldar, Mar 06 2018
|
|
EXTENSIONS
|
a(18)-a(22) from Robert G. Wilson v, Mar 07 2018
|
|
STATUS
|
approved
|
|
|
|