login
A300479
Numbers k such that k is the uphi(k)-th composite number, where uphi is the unitary totient function.
0
6, 12, 15, 21, 24, 28, 36, 52, 68, 76, 265, 295, 2681, 8104, 21413, 174757, 1302197, 15536176, 20149241, 25873648, 237875719, 358334927
OFFSET
1,1
COMMENTS
The unitary version of A100410.
No more terms below 10^7.
FORMULA
Numbers k, such that k = A002808(A047994(k)).
EXAMPLE
12 is a term because uphi(12) = 6 and 12 = A002808(6), the 6th composite.
15 is a term because uphi(15) = 8 and 15 = A002808(8), the 8th composite.
MATHEMATICA
uphi[n_] :=(Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n] ))[[1]] ; seqQ[n_] := (n - uphi[n] - 1 == PrimePi[n]); Select[Range[2, 10^7], seqQ]
PROG
(PARI) uphi(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[1, 2]-1);
isok(k) = k - primepi(k) - 1 == uphi(k); \\ Michel Marcus, Mar 07 2018
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Mar 06 2018
EXTENSIONS
a(18)-a(22) from Robert G. Wilson v, Mar 07 2018
STATUS
approved