login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299196
Number of partitions of n into distinct parts that are lesser of twin primes (A001359).
2
1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 0, 1, 1, 0, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 0, 2, 1, 0, 2, 1, 1, 3, 2, 1, 3, 2, 2, 2, 0, 2, 2, 0, 1, 2, 2, 2, 2, 3, 3, 3
OFFSET
0,47
COMMENTS
For n > 0 let b(n) be the inverse Euler transform of a(n). It appears that, if p is the lesser of twin primes, then b(p) = 1 and b(2*p) = -1; otherwise b(n) = 0. - Georg Fischer, Aug 15 2020
FORMULA
G.f.: Product_{k>=1} (1 + x^A001359(k)).
EXAMPLE
a(46) = 2 because we have [41, 5] and [29, 17].
MAPLE
P:= select(isprime, {seq(i, i=3..201, 2)}):
TP:= P intersect map(`-`, P, 2):
G:= mul(1+x^p, p=TP):
seq(coeff(G, x, i), i=0..200); # Robert Israel, Dec 15 2024
MATHEMATICA
nmax = 105; CoefficientList[Series[Product[1 + Boole[PrimeQ[k] && PrimeQ[k + 2]] x^k, {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 04 2018
STATUS
approved