login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283875 Number of partitions of n into twin primes (A001097). 3
1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 9, 9, 11, 12, 13, 15, 16, 19, 20, 23, 25, 27, 31, 33, 37, 40, 44, 49, 52, 59, 63, 69, 76, 81, 90, 96, 106, 114, 123, 135, 144, 157, 169, 183, 197, 212, 230, 246, 266, 286, 307, 330, 353, 381, 406, 436, 468, 499, 536, 572, 613, 654, 698, 746, 795, 849, 904, 964 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,11

COMMENTS

Conjecture: every number > 7 is the sum of at most 4 twin primes (automatically implies the truth of the first version of the twin prime conjecture). For example: 8 = 5 + 3; 9 = 3 + 3 + 3; 10 = 5 + 5; 11 = 5 + 3 + 3; 12 = 7 + 5, etc.

LINKS

Table of n, a(n) for n=0..79.

Eric Weisstein's World of Mathematics, Twin Primes

Index entries for related partition-counting sequences

FORMULA

G.f.: Product_{k>=1} 1/(1 - x^A001097(k)).

EXAMPLE

a(16) = 4 because we have [13, 3], [11, 5], [7, 3, 3, 3] and [5, 5, 3, 3].

MATHEMATICA

nmax = 79; CoefficientList[Series[Product[1/(1 - Boole[PrimeQ[k] && (PrimeQ[k - 2] || PrimeQ[k + 2])] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

PROG

(PARI) Vec(prod(k=1, 79, 1/(1 - (isprime(k) && (isprime(k - 2) || isprime(k + 2)))*x^k)) + O(x^80)) \\ Indranil Ghosh, Mar 17 2017

CROSSREFS

Cf. A000607, A001097, A077608, A129363, A283876.

Sequence in context: A265410 A029249 A025770 * A099773 A140471 A029061

Adjacent sequences:  A283872 A283873 A283874 * A283876 A283877 A283878

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Mar 17 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 18:10 EDT 2018. Contains 316323 sequences. (Running on oeis4.)