The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298273 The first of three consecutive primes the sum of which is equal to the sum of three consecutive hexagonal numbers. 6
 13, 6427, 7873, 9439, 17203, 20287, 22783, 30133, 77417, 90523, 93949, 115903, 117841, 119797, 324403, 367649, 399163, 424573, 439441, 473839, 501493, 576193, 597859, 628861, 693223, 746023, 987697, 1044733, 1151399, 1212889, 1263247, 1360417, 1454351 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 (first 100 terms from Colin Barker) EXAMPLE 13 is in the sequence because 13+17+19 (consecutive primes) = 49 = 6+15+28 (consecutive hexagonal numbers). MAPLE N:= 100: # to get a(1)..a(100) count:= 0: mmax:= floor((sqrt(24*N-87)-9)/12): for i from 1 while count < N do mi:= 2*i; m:= 6*mi^2+9*mi+7; r:= ceil((m-8)/3); p1:= prevprime(r+1); p2:= nextprime(p1); p3:= nextprime(p2); while p1+p2+p3 > m do p3:= p2; p2:= p1; p1:= prevprime(p1); od: if p1+p2+p3 = m then count:= count+1; A[count]:= p1; fi od: seq(A[i], i=1..count); # Robert Israel, Jan 16 2018 PROG (PARI) L=List(); forprime(p=2, 2000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(24*t-87, &sq) && (sq-9)%12==0, u=(sq-9)\12; listput(L, p))); Vec(L) CROSSREFS Cf. A000040, A000384, A054643, A298073, A298168, A298169, A298222, A298223, A298250, A298251, A298272. Sequence in context: A103857 A263160 A032463 * A203585 A191937 A210157 Adjacent sequences: A298270 A298271 A298272 * A298274 A298275 A298276 KEYWORD nonn AUTHOR Colin Barker, Jan 16 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 9 03:24 EDT 2023. Contains 363168 sequences. (Running on oeis4.)