|
|
A298222
|
|
The first of three consecutive squares the sum of which is equal to the sum of three consecutive primes.
|
|
10
|
|
|
1444, 5776, 6400, 9604, 10816, 13924, 14400, 14884, 22500, 28900, 36100, 61504, 62500, 67600, 88804, 115600, 136900, 166464, 211600, 232324, 291600, 315844, 425104, 454276, 577600, 602176, 715716, 817216, 937024, 1016064, 1020100, 1290496, 1397124, 1507984
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..100
|
|
EXAMPLE
|
1444 is in the sequence because 1444+1521+1600 (consecutive squares) = 4565 = 1511+1523+1531 (consecutive primes).
|
|
PROG
|
(PARI) L=List(); forprime(p=2, 400000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(12*t-24, &sq) && (sq-6)%6==0, u=(sq-6)\6; listput(L, u^2))); Vec(L)
|
|
CROSSREFS
|
Cf. A000040, A000290, A054643, A298073, A298168, A298169, A298223.
Sequence in context: A105417 A105416 A348740 * A180465 A328886 A031754
Adjacent sequences: A298219 A298220 A298221 * A298223 A298224 A298225
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Colin Barker, Jan 15 2018
|
|
STATUS
|
approved
|
|
|
|