login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298221
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 4 or 5 king-move adjacent elements, with upper left element zero.
8
1, 2, 2, 4, 7, 4, 8, 13, 13, 8, 16, 29, 20, 29, 16, 32, 73, 40, 40, 73, 32, 64, 157, 89, 120, 89, 157, 64, 128, 353, 195, 503, 503, 195, 353, 128, 256, 869, 451, 1492, 2066, 1492, 451, 869, 256, 512, 1993, 1046, 4767, 6598, 6598, 4767, 1046, 1993, 512, 1024, 4557, 2453
OFFSET
1,2
COMMENTS
Table starts
...1....2....4.....8.....16......32.......64.......128........256.........512
...2....7...13....29.....73.....157......353.......869.......1993........4557
...4...13...20....40.....89.....195......451......1046.......2453........5810
...8...29...40...120....503....1492.....4767.....17127......56292......185937
..16...73...89...503...2066....6598....30780....125759.....498466.....2153157
..32..157..195..1492...6598...25717...150617....749072....3768994....20393224
..64..353..451..4767..30780..150617..1261845...8555774...57269902...425814658
.128..869.1046.17127.125759..749072..8555774..72407248..624571738..6148262835
.256.1993.2453.56292.498466.3768994.57269902.624571738.7205019743.93491026869
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -5*a(n-2) +10*a(n-3) -24*a(n-4) +16*a(n-5) for n>6
k=3: [order 14] for n>15
k=4: [order 62] for n>65
EXAMPLE
Some solutions for n=6 k=4
..0..0..1..1. .0..1..0..1. .0..0..1..0. .0..1..0..1. .0..0..1..0
..1..1..0..0. .1..1..0..1. .1..0..1..0. .1..0..0..1. .1..0..1..1
..0..1..1..1. .0..0..0..0. .0..0..1..0. .0..0..1..0. .1..0..0..0
..0..1..0..1. .1..1..0..0. .1..1..1..1. .0..0..1..0. .1..0..0..1
..1..0..1..1. .0..1..0..1. .1..0..1..1. .1..0..0..1. .0..1..1..0
..0..1..0..0. .0..0..0..1. .0..0..1..0. .0..1..0..1. .1..1..1..1
CROSSREFS
Column 1 is A000079(n-1).
Sequence in context: A298494 A299187 A299948 * A299350 A299097 A299879
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 15 2018
STATUS
approved