login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299097
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 7, 4, 8, 13, 13, 8, 16, 29, 20, 29, 16, 32, 73, 41, 41, 73, 32, 64, 157, 101, 125, 101, 157, 64, 128, 353, 242, 574, 574, 242, 353, 128, 256, 869, 578, 1847, 2828, 1847, 578, 869, 256, 512, 1993, 1385, 6007, 9624, 9624, 6007, 1385, 1993, 512, 1024, 4557
OFFSET
1,2
COMMENTS
Table starts
...1....2....4.....8.....16......32........64........128.........256
...2....7...13....29.....73.....157.......353........869........1993
...4...13...20....41....101.....242.......578.......1385........3368
...8...29...41...125....574....1847......6007......22330.......78424
..16...73..101...574...2828....9624.....44936.....204059......865754
..32..157..242..1847...9624...42012....255009....1414647.....7786685
..64..353..578..6007..44936..255009...2170819...16528508...123272050
.128..869.1385.22330.204059.1414647..16528508..161247816..1570964262
.256.1993.3368.78424.865754.7786685.123272050.1570964262.20536604982
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -5*a(n-2) +10*a(n-3) -24*a(n-4) +16*a(n-5) for n>6
k=3: [order 16] for n>17
k=4: [order 68] for n>69
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..1. .0..0..0..1. .0..1..1..0. .0..1..0..1. .0..1..0..1
..1..0..1..1. .1..0..0..0. .0..0..1..0. .0..1..0..0. .0..1..0..0
..0..0..1..1. .0..0..0..0. .0..0..1..1. .0..1..0..0. .1..1..1..1
..1..1..1..0. .0..0..0..1. .1..0..1..1. .0..1..0..0. .0..0..1..0
..1..0..1..0. .1..0..0..0. .0..1..0..1. .0..1..0..1. .1..0..1..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A298215.
Sequence in context: A299948 A298221 A299350 * A299879 A299015 A299806
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 02 2018
STATUS
approved