login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299350
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 4, 5 or 8 king-move adjacent elements, with upper left element zero.
5
1, 2, 2, 4, 7, 4, 8, 13, 13, 8, 16, 29, 20, 29, 16, 32, 73, 40, 40, 73, 32, 64, 157, 89, 120, 89, 157, 64, 128, 353, 195, 503, 503, 195, 353, 128, 256, 869, 451, 1492, 2067, 1492, 451, 869, 256, 512, 1993, 1046, 4767, 6605, 6605, 4767, 1046, 1993, 512, 1024, 4557, 2453
OFFSET
1,2
COMMENTS
Table starts
...1....2....4.....8.....16......32.......64.......128........256.........512
...2....7...13....29.....73.....157......353.......869.......1993........4557
...4...13...20....40.....89.....195......451......1046.......2453........5810
...8...29...40...120....503....1492.....4767.....17127......56292......185937
..16...73...89...503...2067....6605....30814....125890.....498977.....2155139
..32..157..195..1492...6605...25754...150748....749550....3771027....20403891
..64..353..451..4767..30814..150748..1262771...8560581...57300258...426035059
.128..869.1046.17127.125890..749550..8560581..72445170..624861384..6151095307
.256.1993.2453.56292.498977.3771027.57300258.624861384.7208056818.93531514754
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -5*a(n-2) +10*a(n-3) -24*a(n-4) +16*a(n-5) for n>6
k=3: [order 14] for n>15
k=4: [order 62] for n>65
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..0..1..0. .0..0..0..1
..0..0..1..0. .0..1..0..1. .0..0..1..1. .1..0..1..1. .1..1..1..0
..1..1..1..0. .1..0..0..0. .0..0..1..1. .0..0..1..1. .0..1..1..1
..0..1..1..1. .1..0..1..1. .1..0..1..0. .0..0..1..0. .0..1..0..0
..0..1..0..0. .0..0..1..0. .1..0..0..0. .1..0..1..1. .1..0..1..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A298215.
Column 3 is A298216.
Column 4 is A298217.
Sequence in context: A299187 A299948 A298221 * A299097 A299879 A299015
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 07 2018
STATUS
approved