login
A298073
The first of three consecutive integers the sum of which is equal to the sum of three consecutive prime numbers.
13
4, 52, 156, 172, 210, 256, 262, 372, 510, 536, 562, 592, 606, 652, 732, 946, 976, 998, 1072, 1102, 1122, 1186, 1222, 1238, 1366, 1460, 1500, 1510, 1540, 1746, 1752, 1762, 1772, 1898, 1906, 1916, 2070, 2180, 2286, 2400, 2408, 2416, 2448, 2676, 2902, 2962
OFFSET
1,1
COMMENTS
Also: Number m such that 3 * m + 6 is the sum of three consecutive primes. - David A. Corneth, Jan 12 2018
LINKS
EXAMPLE
52 is in the sequence because 52 + 53 + 54 = 159 = 47 + 53 + 59.
MATHEMATICA
Block[{nn = 430, s}, s = Total /@ Partition[Prime@ Range[nn], 3, 1]; Select[Partition[Range[Prime@ nn], 3, 1], MemberQ[s, Total@ #] &]][[All, 1]] (* Michael De Vlieger, Jan 11 2018 *)
(#-3)/3&/@Select[Total/@Partition[Prime[Range[500]], 3, 1], Mod[#, 3]==0&] (* Harvey P. Dale, Sep 13 2018 *)
PROG
(PARI) L=List(); forprime(p=2, 4000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if((t-3)%3==0, listput(L, (t-3)/3))); Vec(L)
CROSSREFS
Cf. A054643.
Cf. A075540: the second of the three consecutive integers.
Sequence in context: A110908 A232507 A336428 * A233474 A297764 A101354
KEYWORD
nonn
AUTHOR
Colin Barker, Jan 11 2018
EXTENSIONS
New name by David A. Corneth, Jan 12 2018
STATUS
approved