%I #17 Sep 13 2018 16:40:13
%S 4,52,156,172,210,256,262,372,510,536,562,592,606,652,732,946,976,998,
%T 1072,1102,1122,1186,1222,1238,1366,1460,1500,1510,1540,1746,1752,
%U 1762,1772,1898,1906,1916,2070,2180,2286,2400,2408,2416,2448,2676,2902,2962
%N The first of three consecutive integers the sum of which is equal to the sum of three consecutive prime numbers.
%C Also: Number m such that 3 * m + 6 is the sum of three consecutive primes. - _David A. Corneth_, Jan 12 2018
%H Colin Barker, <a href="/A298073/b298073.txt">Table of n, a(n) for n = 1..1000</a>
%e 52 is in the sequence because 52 + 53 + 54 = 159 = 47 + 53 + 59.
%t Block[{nn = 430, s}, s = Total /@ Partition[Prime@ Range[nn], 3, 1]; Select[Partition[Range[Prime@ nn], 3, 1], MemberQ[s, Total@ #] &]][[All, 1]] (* _Michael De Vlieger_, Jan 11 2018 *)
%t (#-3)/3&/@Select[Total/@Partition[Prime[Range[500]],3,1],Mod[#,3]==0&] (* _Harvey P. Dale_, Sep 13 2018 *)
%o (PARI) L=List(); forprime(p=2, 4000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if((t-3)%3==0, listput(L, (t-3)/3))); Vec(L)
%Y Cf. A054643.
%Y Cf. A075540: the second of the three consecutive integers.
%K nonn
%O 1,1
%A _Colin Barker_, Jan 11 2018
%E New name by _David A. Corneth_, Jan 12 2018