login
A054643
Primes prime(n) such that prime(n) + prime(n+1) + prime(n+2) == 0 (mod 3).
19
3, 47, 151, 167, 199, 251, 257, 367, 503, 523, 557, 587, 601, 647, 727, 941, 971, 991, 1063, 1097, 1117, 1181, 1217, 1231, 1361, 1453, 1493, 1499, 1531, 1741, 1747, 1753, 1759, 1889, 1901, 1907, 2063, 2161, 2281, 2393, 2399, 2411, 2441, 2671, 2897, 2957
OFFSET
1,1
COMMENTS
The 2 differences of these 3 primes should be congruent of 6, except the first prime 3, for which 3 + 5 + 7 = 15 holds. Sequences like A047948, A052198 etc. are subsequences here.
EXAMPLE
For prime(242) = 1531, the sum is 4623, the mean is 1541 and the successive differences are 6a=12 or 6b=6 resp.
MATHEMATICA
Select[Partition[Prime@ Range@ 430, 3, 1], Divisible[Total@ #, 3] &][[All, 1]] (* Michael De Vlieger, Jun 29 2017 *)
CROSSREFS
A122535 is a subsequence.
Cf. A075541 (for their indices).
Sequence in context: A084295 A141850 A003551 * A122535 A058427 A142293
KEYWORD
nonn
AUTHOR
Labos Elemer, May 15 2000
STATUS
approved