login
A298070
T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
7
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 5, 4, 5, 0, 0, 10, 13, 13, 10, 0, 0, 25, 63, 59, 63, 25, 0, 0, 54, 253, 346, 346, 253, 54, 0, 0, 125, 953, 2197, 3500, 2197, 953, 125, 0, 0, 282, 3802, 13350, 33869, 33869, 13350, 3802, 282, 0, 0, 641, 15108, 84657, 302143, 532282
OFFSET
1,8
COMMENTS
Table starts
.0...0.....0......0........0..........0............0.............0
.0...1.....2......5.......10.........25...........54...........125
.0...2.....4.....13.......63........253..........953..........3802
.0...5....13.....59......346.......2197........13350.........84657
.0..10....63....346.....3500......33869.......302143.......2864336
.0..25...253...2197....33869.....532282......7794251.....117272307
.0..54...953..13350...302143....7794251....180902016....4321153141
.0.125..3802..84657..2864336..117272307...4321153141..162145163369
.0.282.15108.529728.26751944.1752542571.102552409457.6062432627760
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-2) +4*a(n-3) +2*a(n-4)
k=3: [order 17]
k=4: [order 62] for n>63
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..0..0..1. .0..0..1..1. .0..0..1..1. .0..0..0..0
..0..1..0..1. .0..0..1..1. .0..1..1..0. .0..1..1..1. .1..0..1..0
..1..0..1..0. .0..1..0..0. .0..0..0..0. .0..0..0..0. .1..1..1..0
..0..1..1..0. .0..1..0..1. .0..1..1..0. .0..1..1..0. .1..0..1..0
..0..0..0..0. .0..0..1..1. .1..1..1..1. .1..1..1..1. .0..0..0..0
CROSSREFS
Column 2 is A297860.
Sequence in context: A370374 A297866 A298133 * A298719 A296148 A121178
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 11 2018
STATUS
approved