

A298169


The first of three consecutive primes the sum of which is equal to the sum of three consecutive triangular numbers.


12



2, 7, 31, 61, 73, 271, 373, 521, 619, 983, 2341, 2843, 3469, 3559, 4943, 6211, 7741, 9173, 12073, 14869, 24083, 33923, 40177, 41611, 43651, 46349, 47269, 51031, 53623, 60719, 64613, 88397, 91801, 93089, 114941, 124739, 126751, 127249, 134923, 141769, 145517
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..300 from Colin Barker)


EXAMPLE

31 is in the sequence because 7+11+13 (consecutive primes) = 31 = 6+10+15 (consecutive triangular numbers).


PROG

(PARI) L=List(); forprime(p=2, 400000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(24*t15, &sq) && (sq9)%6==0, listput(L, p))); Vec(L)


CROSSREFS

Cf. A000040, A000217, A298168.
Sequence in context: A102158 A191073 A049576 * A213721 A102162 A059846
Adjacent sequences: A298166 A298167 A298168 * A298170 A298171 A298172


KEYWORD

nonn


AUTHOR

Colin Barker, Jan 14 2018


STATUS

approved



