OFFSET
0,1
COMMENTS
Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new > = a(n) + n + 1;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then
x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67))
x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
EXAMPLE
n: 0 1 2 3 4 5 6 7 8 9 10
a: 1 4 5 7 9 12 15 16 17 20 21
b: 2 6 8 11 14 19 22 24 26 30 32
c: 3 10 13 18 23 31 37 40 43 50 53
MATHEMATICA
z=200;
mex[list_, start_]:=(NestWhile[#+1&, start, MemberQ[list, #]&]);
a={1}; b={2}; c={3}; n=0;
Do[{n++;
AppendTo[a, mex[Flatten[{a, b, c}], If[Length[a]==0, 1, Last[a]]]],
AppendTo[b, mex[Flatten[{a, b, c}], Last[a]+n+1]],
AppendTo[c, Last[a]+Last[b]]}, {z}];
Take[a, 100] (* A297838 *)
Take[b, 100] (* A298170 *)
Take[c, 100] (* A298418 *)
(* Peter J. C. Moses, Apr 23 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 25 2018
STATUS
approved