login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298418
Solution (c(n)) of the system of 3 complementary equations in Comments.
3
3, 10, 13, 18, 23, 31, 37, 40, 43, 50, 53, 63, 68, 70, 73, 82, 85, 89, 91, 98, 111, 115, 118, 120, 129, 139, 141, 144, 150, 153, 155, 160, 164, 168, 183, 187, 189, 194, 198, 201, 203, 217, 219, 232, 235, 240, 247, 253, 255, 258, 261, 264, 268, 270, 275, 284
OFFSET
0,1
COMMENTS
Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new > = a(n) + n + 1;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then
x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67))
x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1.
(The same limits occur in A298868 and A297469.)
LINKS
EXAMPLE
n: 0 1 2 3 4 5 6 7 8 9 10
a: 1 4 5 7 9 12 15 16 17 20 21
b: 2 6 8 11 14 19 22 24 26 30 32
c: 3 10 13 18 23 31 37 40 43 50 53
MATHEMATICA
z=200;
mex[list_, start_]:=(NestWhile[#+1&, start, MemberQ[list, #]&]);
a={1}; b={2}; c={3}; n=0;
Do[{n++;
AppendTo[a, mex[Flatten[{a, b, c}], If[Length[a]==0, 1, Last[a]]]],
AppendTo[b, mex[Flatten[{a, b, c}], Last[a]+n+1]],
AppendTo[c, Last[a]+Last[b]]}, {z}];
Take[a, 100] (* A297838 *)
Take[b, 100] (* A298170 *)
Take[c, 100] (* A298418 *)
(* Peter J. C. Moses, Apr 23 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 01 2018
STATUS
approved