login
A298418
Solution (c(n)) of the system of 3 complementary equations in Comments.
3
3, 10, 13, 18, 23, 31, 37, 40, 43, 50, 53, 63, 68, 70, 73, 82, 85, 89, 91, 98, 111, 115, 118, 120, 129, 139, 141, 144, 150, 153, 155, 160, 164, 168, 183, 187, 189, 194, 198, 201, 203, 217, 219, 232, 235, 240, 247, 253, 255, 258, 261, 264, 268, 270, 275, 284
OFFSET
0,1
COMMENTS
Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new > = a(n) + n + 1;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then
x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67))
x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1.
(The same limits occur in A298868 and A297469.)
LINKS
EXAMPLE
n: 0 1 2 3 4 5 6 7 8 9 10
a: 1 4 5 7 9 12 15 16 17 20 21
b: 2 6 8 11 14 19 22 24 26 30 32
c: 3 10 13 18 23 31 37 40 43 50 53
MATHEMATICA
z=200;
mex[list_, start_]:=(NestWhile[#+1&, start, MemberQ[list, #]&]);
a={1}; b={2}; c={3}; n=0;
Do[{n++;
AppendTo[a, mex[Flatten[{a, b, c}], If[Length[a]==0, 1, Last[a]]]],
AppendTo[b, mex[Flatten[{a, b, c}], Last[a]+n+1]],
AppendTo[c, Last[a]+Last[b]]}, {z}];
Take[a, 100] (* A297838 *)
Take[b, 100] (* A298170 *)
Take[c, 100] (* A298418 *)
(* Peter J. C. Moses, Apr 23 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 01 2018
STATUS
approved