login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298421
Expansion of f(q, q^2) * chi(q^3)^3 * f(-q^4)^2 in powers of q where chi(), f(), f(,) are Ramanujan theta functions.
2
1, 1, 1, 3, 1, 2, 1, -2, -1, -5, 0, -4, -3, 2, -2, 4, -3, 2, -5, -4, 2, -12, -2, -4, 3, 5, 0, 9, 2, 6, 6, -6, -1, -4, 6, -4, -5, 6, -2, 18, 0, 6, 0, -4, 4, -10, -4, -4, 9, 7, 7, 8, 2, 6, 7, -4, -6, -18, 0, -8, -4, 6, -2, 10, -3, 8, -18, -8, 2, -8, -4, -12, 5
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(q^3) * f(-q^4)^2 * chi(-q^6)^2 / chi(-q) in powers of q where chi(), f(), are Ramanujan theta functions.
Expansion of psi(q) * psi(q^2) * phi(-q^6)^2 / psi(-q^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2) * eta(q^4)^2 * eta(q^6)^5 / (eta(q) *eta(q^3) * eta(q^12)^3) in powers of q.
Euler transform of period 12 sequence [1, 0, 2, -2, 1, -4, 1, -2, 2, 0, 1, -3, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 18432^(1/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A298420.
EXAMPLE
G.f. = 1 + q + q^2 + 3*q^3 + q^4 + 2*q^5 + q^6 - 2*q^7 - q^8 - 5*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -q^3] QPochhammer[ q^4]^2 QPochhammer[ q^6, q^12]^2 QPochhammer[ -q, q], {q, 0, n}];
a[ n_] := SeriesCoefficient[ 2^(-3/2) EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 2, 0, q] EllipticTheta[ 4, 0, q^6]^2 / EllipticTheta[ 2, Pi/4, q^(3/2)], {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^5 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^3), n))};
CROSSREFS
Cf. A298420.
Sequence in context: A230500 A010281 A353361 * A080131 A319956 A082882
KEYWORD
sign
AUTHOR
Michael Somos, Jan 18 2018
STATUS
approved